Tiny RTC I2C Modules – часы, точный генератор, микросхема памяти. RTC модуль DS1307 подключение к Arduino Подключение ЖК экрана к Ардуино по I2C

Во многих проектах Ардуино требуется отслеживать и фиксировать время наступления тех или иных событий. Модуль часов реального времени, оснащенный дополнительной батарей, позволяет хранить текущую дату, не завися от наличия питания на самом устройстве. В этой статье мы поговорим о наиболее часто встречающихся модулях RTC DS1307, DS1302, DS3231, которые можно использовать с платой Arduino.

Модуль часов представляет собой небольшую плату, содержащей, как правило, одну из микросхем DS1307, DS1302, DS3231.Кроме этого, на плате практически можно найти механизм установки батарейки питания. Такие платы часто применяется для учета времени, даты, дня недели и других хронометрических параметров. Модули работают от автономного питания – батареек, аккумуляторов, и продолжают проводить отсчет, даже если на Ардуино отключилось питание. Наиболее распространенными моделями часов являются DS1302, DS1307, DS3231. Они основаны на подключаемом к Arduino модуле RTC (часы реального времени).

Часы ведут отсчет в единицах, которые удобны обычному человеку – минуты, часы, дни недели и другие, в отличие от обычных счетчиков и тактовых генераторов, которые считывают «тики». В Ардуино имеется специальная функция millis(), которая также может считывать различные временные интервалы. Но основным недостатком этой функции является сбрасывание в ноль при включении таймера. С ее помощью можно считать только время, установить дату или день недели невозможно. Для решения этой проблемы и используются модули часов реального времени.

Электронная схема включает в себя микросхему, источник питания, кварцевый резонатор и резисторы. Кварцевый резонатор работает на частоте 32768 Гц, которая является удобной для обычного двоичного счетчика. В схеме DS3231 имеется встроенный кварц и термостабилизация, которые позволяют получить значения высокой точности.

Сравнение популярных модулей RTC DS1302, DS1307, DS3231

В этой таблице мы привели список наиболее популярных модулей и их основные характеристики.

Название Частота Точность Поддерживаемые протоколы
DS1307 1 Гц, 4.096 кГц, 8.192 кГц, 32.768 кГц Зависит от кварца – обычно значение достигает 2,5 секунды в сутки, добиться точности выше 1 секунды в сутки невозможно. Также точность зависит от температуры. I2C
DS1302 32.768 кГц 5 секунд в сутки I2C, SPI
DS3231 Два выхода – первый на 32.768 кГц, второй – программируемый от 1 Гц до 8.192 кГц ±2 ppm при температурах от 0С до 40С.

±3,5 ppm при температурах от -40С до 85С.

Точность измерения температуры – ±3С

I2C

Модуль DS1307

DS1307 – это модуль, который используется для отсчета времени. Он собран на основе микросхемы DS1307ZN, питание поступает от литиевой батарейки для реализации автономной работы в течение длительного промежутка времени. Батарея на плате крепится на обратной стороне. На модуле имеется микросхема AT24C32 – это энергонезависимая память EEPROM на 32 Кбайт. Обе микросхемы связаны между собой шиной I2C. DS1307 обладает низким энергопотреблением и содержит часы и календарь по 2100 год.

Модуль обладает следующими параметрами:

  • Питание – 5В;
  • Диапазон рабочих температур от -40С до 85С;
  • 56 байт памяти;
  • Литиевая батарейка LIR2032;
  • Реализует 12-ти и 24-х часовые режимы;
  • Поддержка интерфейса I2C.

Модуль оправдано использовать в случаях, когда данные считываются довольно редко, с интервалом в неделю и более. Это позволяет экономить на питании, так как при бесперебойном использовании придется больше тратить напряжения, даже при наличии батарейки. Наличие памяти позволяет регистрировать различные параметры (например, измерение температуры) и считывать полученную информацию из модуля.

Взаимодействие с другими устройствами и обмен с ними информацией производится с помощью интерфейса I2C с контактов SCL и SDA. В схеме установлены резисторы, которые позволяют обеспечивать необходимый уровень сигнала. Также на плате имеется специальное место для крепления датчика температуры DS18B20.Контакты распределены в 2 группы, шаг 2,54 мм. В первой группе контактов находятся следующие выводы:

  • DS – вывод для датчика DS18B20;
  • SCL – линия тактирования;
  • SDA – линия данных;
  • VCC – 5В;

Во второй группе контактов находятся:

  • SQ – 1 МГц;
  • BAT – вход для литиевой батареи.

Для подключения к плате Ардуино нужны сама плата (в данном случае рассматривается Arduino Uno), модуль часов реального времени RTC DS1307, провода и USB кабель.

Чтобы подключить контроллер к Ардуино, используются 4 пина – VCC, земля, SCL, SDA.. VCC с часов подключается к 5В на Ардуино, земля с часов – к земле с Ардуино, SDA – А4, SCL – А5.

Для начала работы с модулем часов нужно установить библиотеки DS1307RTC, TimeLib и Wire. Можно использовать для работы и RTCLib.

Проверка RTC модуля

При запуске первого кода программа будет считывать данные с модуля раз в секунду. Сначала можно посмотреть, как поведет себя программа, если достать из модуля батарейку и заменить на другую, пока плата Ардуино не присоединена к компьютеру. Нужно подождать несколько секунд и вытащить батарею, в итоге часы перезагрузятся. Затем нужно выбрать пример в меню Examples→RTClib→ds1307. Важно правильно поставить скорость передачи на 57600 bps.

При открытии окна серийного монитора должны появиться следующие строки:

Будет показывать время 0:0:0. Это связано с тем, что в часах пропадает питание, и отсчет времени прекратится. По этой причине нельзя вытаскивать батарею во время работы модуля.

Чтобы провести настройку времени на модуле, нужно в скетче найти строку

RTC.adjust(DateTime(__DATE__, __TIME__));

В этой строке будут находиться данные с компьютера, которые используются ля прошивки модуля часов реального времени. Для корректной работы нужно сначала проверить правильность даты и времени на компьютере, и только потом начинать прошивать модуль часов. После настройки в мониторе отобразятся следующие данные:

Настройка произведена корректно и дополнительно перенастраивать часы реального времени не придется.

Считывание времени. Как только модуль настроен, можно отправлять запросы на получение времени. Для этого используется функция now(), возвращающая объект DateTime, который содержит информацию о времени и дате. Существует ряд библиотек, которые используются для считывания времени. Например, RTC.year() и RTC.hour() – они отдельно получают информацию о годе и часе. При работе с ними может возникнуть проблема: например, запрос на вывод времени будет сделан в 1:19:59. Прежде чем показать время 1:20:00, часы выведут время 1:19:00, то есть, по сути, будет потеряна одна минута. Поэтому эти библиотеки целесообразно использовать в случаях, когда считывание происходит нечасто – раз в несколько дней. Существуют и другие функции для вызова времени, но если нужно уменьшить или избежать погрешностей, лучше использовать now() и из нее уже вытаскивать необходимые показания.

Пример проекта с i2C модулем часов и дисплеем

Проект представляет собой обычные часы, на индикатор будет выведено точное время, а двоеточие между цифрами будет мигать с интервалом раз в одну секунду. Для реализации проекта потребуются плата Arduino Uno, цифровой индикатор, часы реального времени (в данном случае вышеописанный модуль ds1307), шилд для подключения (в данном случае используется Troyka Shield), батарейка для часов и провода.

В проекте используется простой четырехразрядный индикатор на микросхеме TM1637. Устройство обладает двухпроводным интерфейсом и обеспечивает 8 уровней яркости монитора. Используется только для показа времени в формате часы:минуты. Индикатор прост в использовании и легко подключается. Его выгодно применять для проектов, когда не требуется поминутная или почасовая проверка данных. Для получения более полной информации о времени и дате используются жидкокристаллические мониторы.

Модуль часов подключается к контактам SCL/SDA, которые относятся к шине I2C. Также нужно подключить землю и питание. К Ардуино подключается так же, как описан выше: SDA – A4, SCL – A5, земля с модуля к земле с Ардуино, VCC -5V.

Индикатор подключается просто – выводы с него CLK и DIO подключаются к любым цифровым пинам на плате.

Скетч. Для написания кода используется функция setup, которая позволяет инициализировать часы и индикатор, записать время компиляции. Вывод времени на экран будет выполнен с помощью loop.

#include #include "TM1637.h" #include "DS1307.h" //нужно включить все необходимые библиотеки для работы с часами и дисплеем. char compileTime = __TIME__; //время компиляции. #define DISPLAY_CLK_PIN 10 #define DISPLAY_DIO_PIN 11 //номера с выходов Ардуино, к которым присоединяется экран; void setup() { display.set(); display.init(); //подключение и настройка экрана. clock.begin(); //включение часов. byte hour = getInt(compileTime, 0); byte minute = getInt(compileTime, 2); byte second = getInt(compileTime, 4); //получение времени. clock.fillByHMS(hour, minute, second); //подготовка для записывания в модуль времени. clock.setTime(); //происходит запись полученной информации во внутреннюю память, начало считывания времени. } void loop() { int8_t timeDisp; //отображение на каждом из четырех разрядов. clock.getTime();//запрос на получение времени. timeDisp = clock.hour / 10; timeDisp = clock.hour % 10; timeDisp = clock.minute / 10; timeDisp = clock.minute % 10; //различные операции для получения десятков, единиц часов, минут и так далее. display.display(timeDisp); //вывод времени на индикатор display.point(clock.second % 2 ? POINT_ON: POINT_OFF);//включение и выключение двоеточия через секунду. } char getInt(const char* string, int startIndex) { return int(string - "0") * 10 + int(string) - "0"; //действия для корректной записи времени в двухзначное целое число. В ином случае на экране будет отображена просто пара символов. }

После этого скетч нужно загрузить и на мониторе будет показано время.

Программу можно немного модернизировать. При отключении питания выше написанный скетч приведет к тому, что после включения на дисплее будет указано время, которое было установлено при компиляции. В функции setup каждый раз будет рассчитываться время, которое прошло с 00:00:00 до начала компиляции. Этот хэш будет сравниваться с тем, что хранятся в EEPROM, которые сохраняются при отключении питания.

Для записи и чтения времени в энергонезависимую память или из нее нужно добавить функции EEPROMWriteInt и EEPROMReadInt. Они нужны для проверки совпадения/несовпадения хэша с хэшем, записанным в EEPROM.

Можно усовершенствовать проект. Если использовать жидкокристаллический монитор, можно сделать проект, который будет отображать дату и время на экране. Подключение всех элементов показано на рисунке.

В результате в коде нужно будет указать новую библиотеку (для жидкокристаллических экранов это LiquidCrystal), и добавить в функцию loop() строки для получения даты.

Алгоритм работы следующий:

  • Подключение всех компонентов;
  • Проверка – на экране монитора должны меняться ежесекундно время и дата. Если на экране указано неправильное время, нужно добавить в скетч функцию RTC.write (tmElements_t tm). Проблемы с неправильно указанным временем связаны с тем, что модуль часов сбрасывает дату и время на 00:00:00 01/01/2000 при выключении.
  • Функция write позволяет получить дату и время с компьютера, после чего на экране будут указаны верные параметры.

Заключение

Модули часов используются во многих проектах. Они нужны для систем регистрации данных, при создании таймеров и управляющих устройств, которые работают по заданному расписанию, в бытовых приборах. С помощью широко распространенных и дешевых модулей вы можете создать такие проекты как будильник или регистратор данных с сенсоров, записывая информацию на SD-карту или показывая время на экране дисплея. В этой статье мы рассмотрели типичные сценарии использования и варианты подключения наиболее популярных видов модулей.

Модуль часов реального времени DS1307
Tiny RTC I2C module 24C32 memory DS1307 clock

Небольшой модуль, выполняющий функции часов реального времени. Выполнен на базе микросхемы DS1307ZN+ . Непрерывный отсчет времени происходит благодаря автономному питанию от батареи, установленной в модуль. Также модуль содержит память EEPROM объемом 32 Кбайт, сохраняющую информацию при отключении всех видов питания. Память и часы связаны общей шиной интерфейса I2C. На контакты модуля выведены сигналы шины I2C. При подключении внешнего питания происходит подзарядка батареи через примитивную цепь подзарядки. На плате имеется место для монтажа цифрового датчика температуры DS18B20. В комплект поставки он не входит.
Использование этого устройства происходит при измерении временных интервалов более недели приборами на основе микроконтроллера. Задействовать собственные ресурсы МК для этой цели неоправданно, а зачастую невозможно. Обеспечить бесперебойное питание на длительный срок дорого, установить батарею для питания МК нельзя из-за значительного тока потребления. Тут на выручку приходит модуль часов реального времени DS1307.
Также модуль часов реального времени DS1307 благодаря наличию собственной памяти позволяет регистрировать данные событий, происходящих несколько раз в сутки, например измерения температуры. Журнал событий в дальнейшем считывается из памяти модуля. Эти возможности позволяют использовать модуль в составе автономной автоматической метеостанции или для исследований климата в труднодоступных местах: пещерах, вершинах скал. Становится возможным регистрировать тензопараметры архитектурных сооружений, например опор мостов и других. При оснащении прибора радиосвязью достаточно установить его в исследуемой местности.

Характеристики

Напряжение питания 5 В
Размеры 27 х 28 х 8,4 мм

Электрическая схема

Устройство обменивается данными с электроникой прибора с помощью сигналов SCL и SDA. Микросхема IC2 - часы реального времени. Конденсаторы С1 и С2 снижают уровень помех в линии питания VCC. Резисторы R2 и R3 обеспечивают надлежащий уровень сигналов SCL и SDA. С вывода 7 микросхемы IC2 поступает сигнал SQ, состоящий из прямоугольных импульсов частотой 1 Гц. Он используется для проверки работоспособности МС IC2. Компоненты R4, R5, R6, VD1 обеспечивают подзарядку батареи BAT1. Для хранения данных модуль часов реального времени DS1307 содержит микросхему IC1 - долговременная память. US1 - датчик температуры. Сигналы модуля и линии питания выведены на соединители JP1 и P1.

Информационная шина

I2C это стандартный последовательный интерфейс посредством двух сигнальных линий SCL, SDA и общего провода. Линии интерфейса образуют шину. К линиям интерфейса I2C можно подключить несколько микросхем, не только микросхемы модуля. Для идентификации микросхемы на шине, а именно записи данных в требуюмую МС и определения от какой МС поступают данные. Каждая микросхема имеет уникальный адрес для проложенной шины. DS1307 имеет Адрес 0x68. Он записан на заводе-изготовителе. Микросхема памяти имеет адрес 0x50. В программное обеспечение Arduino входит программная библиотека, обеспечивающая поддержку I2C.

Микросхема часов реального времени

DS1307 обладает низким энергопотреблением, обменивается данными с другими устройствами через интерфейс I2C, содержит память 56 байт. Содержит часы и календарь до 2100 г. Микросхема часов реального времени обеспечивает другие устройства информацией о настоящем моменте: секунды, минуты, часы, день недели, дата. Количество дней в каждом месяце учитывается автоматически. Есть функция компенсации для високосного года. Имеется флаг, чтобы определить, работают часы в 24-часовом режиме или 12-часовом режиме. Для работы в режиме 12 часов микросхема имеет бит, откуда считываются данные для передачи о периоде времени: до или после обеда.

Микросхема долговременной памяти

Рисунок модуля часов реального времени DS1307 со стороны батареи с установленным датчиком температуры U1.

Батарея

В держатель на обратной стороне платы устанавливается литиевая дисковая батарея CR2032. Она выпускается множеством производителей, например изготовленная фирмой GP обеспечивает напряжение 3,6 В и ток разряда 210 мАч. Батарея подзаряжается во время включения питания, с таким режимом работы литиевой батареи мы сталкиваемся на материнской плате компьютера.

Подзарядка батареи

Программное обеспечение

Для работы модуля в составе Arduino вполне подойдет устаревшая библиотека с сайта Adafruit под названием RTCLib. Скетч называется DS1307.pde. Существует обновленная версия . Следует скачать архив, распаковать его, переименовать и скопировать библиотеку в свой каталог библиотек Arduino.

Подключение к Arduino Mega

Для этого следует использовать скетчи
SetRTC устанавливает время в часах в соответствии со временем, которое указано в скетче.
GetRTC выводит время.
Оба скетча требуют библиотеку Wire и определить адрес I2C. Чтобы установить адрес часов на шине I2C, используйте этот I2C сканер .

Соединение с Arduino Mega.

Подключите SCL и SDA к соответствующим контактам 21 и 20 на Arduino Mega 2560. Подключите питание.

Соединение с Arduino Uno


Установите время в скетче SetRTC и загрузите в Arduino. Затем нажмите кнопку сброса для установки часов. Теперь загрузите скетч GetRTC. Откройте последовательный монитор и смотрите. Есть специальная библиотека времени . Она имеет много различных функций, которые могут быть полезны в зависимости от ситуации. Чтобы установить время, используя библиотеку нужно скачать . При использовании скетча можно синхронизировать часы реального времени с часами персонального компьютера.

В статье вы познакомитесь с отличным модулем часов реального времени на батарейке.

С помощью этого модуля можно отслеживать время в ваших проектах на Arduino даже в случае перепрограммирования или отключения питания. Это один из необходимых элементов для проектов будильников, сигнализаций, снятия показаний с датчиков в режиме реального времени. Одна из самых популярных моделей модуля часов реального времени - DS1307. Именно на нем мы и остановимся. Модуль отлично сочетается с микроконтроллерами Arduino, на которых питание логики равно 5 В.

Особенности модуля от компании-производителя Adafruit (китайцы предлагают аналогичные варианты раза в три-четыре дешевле):

  • Все включено: чип, обвязка, батарейка;
  • Легко собирается и прост в использовании;
  • Устанавливается на любую макетную плату или подключается напрямую с помощью проводов;
  • Есть отличные библиотеки и скетчи-примеры;
  • Два отверстия для монтажа;
  • Продолжительность работы - около пяти лет!

Модуль часов реального времени может быть уже распаянным, а может продаваться в виде отдельных комплектующих, пайка которых займет около 15-ти минут, не более.

Что такое часы реального времени?

Часы реально времени - это... часы. Модуль работает от автономного питания - батарейки и продолжает вести отсчет времени, даже если на вашем проекте на Arduino пропало питание. Используя модуль реального времени, вы можете отслеживать время, даже если вы захотите внести изменения в ваш скетч и перепрограммировать микроконтроллер.

На большинстве микроконтроллеров, в том числе и Arduino, есть встроенный счетчик временни, который называется millis(). Есть и встроенные в чип таймеры, которые могут отслеживать более длительные промежутки времени (минуты или дни). Так зачем же вам отдельным модуль часов? Основная проблема в том, что millis() отслеживает время только с момента подачи питания на Arduino. То есть, как только вы отключили плату, таймер сбрасывается в 0. Вша Arduino не знает, что сейчас, например, четверг или 8-е марта. Все, чего вы можете добиться от встроенного счетчика - это "Прошло 14000 миллисекунд с момента последнего включения".

Например вы создали программу и хотите вести отсчет времени с этого момента. Если вы отключите питание микроконтроллера, счетчик времени собьется. Примерно так, как это происходит с дешевыми китайскими часами: когда садится батарейка, они начинают мигать с показанием 12:00.

В некоторых проектах Arduino вам понадобится надежный контроль времени без прерываний. Именно в таких случаях используется внешний модуль часов реального времени. Чип, который используется в подобных часах, отслеживает года и даже знает сколько дней в месяце (единственно, что обычно не учитывается - это переход на летнее и зимнее время, так как подобные переводы разные в разных частях мира).

На рисунке ниже показана материнская плата компьютера с часами реального времени DS1387. В часах используется литиевая батарея, поэтому они разрослись в размерах.

Мы рассмотрим пример использования часов реального времени DS1307. Это дешевый, легкий в использовании модуль, который работает несколько лет от небольшой батарейки.

Пока батарейка в самом модуле не исчерпает свой заряд, DS1307 будет вести отсчет времени, даже если Arduino отключен от питания или перепрограммируется.

Узлы, из которых состоит модуль часов реального времени

Детали модуля часов реального времени DS1307 от компании Adafruit
Рисунок Обозначение Описание Производитель Количество
IC2 Чип часов реального времени DS1307 1
Q1 32.768 КГц, 12.5 пФ кристалл Generic 1
R1, R2 1/4 Вт 5% 2.2 КОм резистор Красный, Красный, Красный, Золотой Generic 2
C1 0.1 мкФ керамический конденсатор Generic 1
Рельса на 5 контактов (1x5) Generic 1
Батарейка 12 мм 3 В литиевая батарейка CR1220 1
12mm coin cell holder Keystone 3001 1
Плата Adafruit Industries 1

Сборка модуля часов реального времени

Сборка часов реального времени DS1307 компании Adafruit
Фото Пояснения

Подготовьтесь к сборке. Проверьте наличие всех необходимых деталей и инструментов. Установите монтажную плату в тисках.

Нанесите немного припоя на отрицательный контакт батареи.

Установите два резистора 2.2 КОм и керамический конденсатор. Как именно вы их расположите - неважно. Полярность не имеет значения. После этого установите кристалл (также симметрично), держатель (холдер) для батарейки и чип часов реального времени. Чип модуля реального времени надо установить таким образом, чтобы отметка (паз) на чипе располагалась в соответствии с обозначением на монтажной плате. Внимательно посмотрите на фото слева, там чип установлен верно.


Чтобы холдер для батарейки не выпадал, лучше его припаять сверху. После этого переверните плату и и припаяйте оставшиеся контакты.

Удалите остатки контактов от резисторов, кристалла и конденсатора.

Если вы хотите использовать контакты для установки модуля на беспаечную монтажную плату, установите рельсу контактов на макетку, модуль часов реального времени сверху и припаяйте контакты.

Установите батарейку. Плоская часть батареи должна быть сверху. В среднем батарейка будет служить около 5 лет. Даже если батарейка села, не оставляйте слот для нее пустым.

Библиотека Arduino для работы с DS1307

DS1307 легко подключается к любому микроконтроллеру с питанием логики 5 В и возможностью I2C подключения. Мы рассмотрим подключение и использование этого модуля с Arduino .

Будем использовать библиотеку RTClib для получения и настройки показаний с DS1307. Если у вас есть вопросы по учтановке дополнительных библиотек Arduino - ознакомьтесь с этой инструкцией .

В статье рассмотрен пример часов реального времени от Adafruit, но вы можете с тем же успехом использовать китайские аналоги. Принцип работы и подключения не отличается.

  • КУПИТЬ Arduino Uno R3 ;
  • КУПИТЬ Breadboard ;
  • КУПИТЬ модуль часов реального времени DS1307 ;

На часах реального премени 5 пинов: 5V, GND, SCL, SDA и SQW.

  • 5V используется для питания чипа модуля часов реального времени, когда вы делаете к нему запрос для получения данных о времени. Если сигнал 5 В не поступает, чип переходит в "спящий" режим.
  • GND - общая земля. Обязательно подключается в схему.
  • SCL - контакт i2c часов - необходим для обмена данными с часами реального времени.
  • SDA - контакт, по которому через i2c передаются данные с часов реального времени.
  • SQW дает возможность настроить вывод данных в виде square-wave. В большинстве случаев этот контакт не используется.

Если вы настроили аналоговый пин 3 (цифровой 17) в режим OUTPUT и HIGH, а аналоговый пин 2 (цифровой 16) в режим OUTPUT и LOW, вы можете запитывать часы реального времени непосредственно от этих контактов!

Подключите аналоговый пин 4 на Arduino к SDA. Аналоговый пин 5 на Arduino подключите к SCL.


Скетч для Arduino

Проверка часов реального времени

Первый скетч, который стоит запустить - это программа, которая будет считывать данные с модуля часов реального времени раз в секунду.

Для начала давайте посмотрим, что произойдет, если мы извлечем батарейку и заменим ее на другую, пока Arduino не подключен к USB. Подождите 3 секунды и извлеките батарейку. В результате чип на часах реального времени перезагрузится. После этого вставьте код, который приведен ниже (код также можно выгрузить в меню Examples→RTClib→ds1307 в Arduino IDE) и загрузите его на Arduino.

Вам также понадобится библиотека OneWire.h, скачть ее можно

.

// функции даты и времени с использованием часов реального времени DS1307, подключенные по I2C. В скетче используется библиотека Wire lib

#include <Wire.h>

#include "RTClib.h"

Serial.begin(57600);

if (! RTC.isrunning()) {

Serial.println("RTC is NOT running!");

// RTC.adjust(DateTime(__DATE__, __TIME__));

DateTime now = RTC.now();

Serial.print("/");

Serial.print("/");

Serial.print(now.day(), DEC);

Serial.print(" ");

Serial.print(":");

Serial.print(":");

Serial.println();

Serial.print(now.unixtime());

Serial.print("s = ");

Serial.println("d");

// рассчитываем дату: 7 дней и 30 секунд

DateTime future (now.unixtime() + 7 * 86400L + 30);

Serial.print(" now + 7d + 30s: ");

Serial.print(future.year(), DEC);

Serial.print("/");

Serial.print(future.month(), DEC);

Serial.print("/");

Serial.print(future.day(), DEC);

Serial.print(" ");

Serial.print(future.hour(), DEC);

Serial.print(":");

Serial.print(future.minute(), DEC);

Serial.print(":");

Serial.print(future.second(), DEC);

Serial.println();

Serial.println();

Теперь откройте окно серийного монитора и убедитесь, что скорость передачи данных установлена корректно: на 57600 bps.

В результате вы должны увидеть в окне серийного монитора примерно следующее:


Если в часах реального времени пропадет питание, отобразится 0:0:0. Секунды отсчитываться перестанут. После настройки времени, пойдет новый отсчет. Именно по этой причине извлекать батарейку во время работы модуля часов реального времени нельзя.

Настройка времени на модуле часов

В этом же скетче раскомментируйте строку, которая начинается с RTC.adjust:

// строка ниже используется для настройки даты и времени часов

RTC.adjust(DateTime(__DATE__, __TIME__));

Процесс настройки даты и времени реализован очень элегантно. В эту строку попадают данные с вашего счетчика на персональном компьютере (в момент компилляции кода). Эти данные используются для прошивки вашего модуля часов реального времени. То есть, если время на вашем ПК настроено неверно, рекомендуем сначала исправить этот баг, а потом переходить к прошивке модуля часов для Arduino.

После настройки, откройте серийный монитор и убедитесь, что часы настроены корректно:


Все. С этого момента и на протяжении ближайших нескольких лет настраивать DS1307 не придется.

Считывание показаний времени с DS1307

После настройки часов реального времени DS1307, может отправлять к ним запросы. Давайте рассмотрим часть скетча, в которой реализованы эти запросы.

DateTime now = RTC.now();

Serial.print(now.year(), DEC);

Serial.print("/");

Serial.print(now.month(), DEC);

Serial.print("/");

Serial.print(now.day(), DEC);

Serial.print(" ");

Serial.print(now.hour(), DEC);

Serial.print(":");

Serial.print(now.minute(), DEC);

Serial.print(":");

Serial.print(now.second(), DEC);

Serial.println();

По сути существует один вариант для получения времени с использованием часов реального времени. Для этого используется функция now(), которая возвращает объект DateTime. В этом объекте содержаться данные про год, месяц, день, час, минуту и секунду.

Есть ряд библиотек для часов реального времени, в которых предусмотрены функции вроде RTC.year() и RTC.hour(). Эти функции вытягивают отдельно год и час. Но их использование сопряжено с рядом проблем: если вы сделаете запрос на вывод минут в момент времени, например, 3:14:59, то есть, прямо перед тем как показания минут должны приравняться к "15" (3:15:00), полученные данные будут равны 3:14:00 - то есть, вы потеряете одну минуту.

В общем, использование отдельных функций для вызова часа или года обосновано только в том случае, когда точность контроля времени с разбросом в одну минуту/года для вашего проекта не критична (как правило, это в тех случаях, когда показания снимаются редко - раз в сутки, раз в неделю). В любом случае, если вы хотите избежать погрешностей в показаниях, используйте now(), а уже из полученных данных тяните необходимые вам показания (минуты, года и т.п.).

Есть еще один формат данных, которые мы можем подучить - количество секунд от полуночи, 1-го января 1970 года. Для этого используется функция unixtime ():

Serial.print(" since 1970 = ");

Serial.print(now.unixtime());

Serial.print("s = ");

Serial.print(now.unixtime() / 86400L);

Serial.println("d");

Так как в одном дне 60*60*24 = 86400 секунд, можно перевести полученное значение в дни и года. Очень удобный вариант, если вам надо отследить, сколько времени прошло с момента последнего запроса. Например, если прошло 5 минут с момента последнего последнего обращения Arduino к часам реального времени DS1307, значение, которое вернет функция unixtime() будет больше на 300.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Все, что вам нужно сделать, так это сконфигурировать RTC-чип в соответствии с текущей датой и временем … и сегодняшний проект поможет вам это сделать!

Проект

RTCSetup состоит из двух элементов:

  • графический интерфейс пользователя (GUI), написанный на языке C# и запущенный на ПК
  • скетч, запущенный на Arduino, к которому подключен модуль RTC

Графический интерфейс пользователя и скетч соединены по последовательному интерфейсу с помощью несложного протокола. Исходный код для них доступен в моем хранилище данных Github.

Arduino и часы реального времени

Для связи с чипом DS1307 я выбрал библиотеку RTClib хранилища Adafruit. Данный чип наиболее часто используется в модулях RTC энтузиастами со всего мира. Соединение между ИС и Arduino устанавливается с помощью шины I2 C :

На рисунке показано соединение, организованное с помощью “новых” выводов I2C платы Arduino Uno; естественно вы можете использовать выводы A4 и A5.

Скетч Arduino получает команды от ПК, выполняет их и посылает назад ответный сигнал.

Протокол

Как я указал ранее, для связи между графическим интерфейсом пользователя и Arduino используется несложный протокол, созданный с помощью только 4-х команд :

Команда: ##

Первая команда, отправленная после установления соединения, используется ПК для подтверждения “совместимости” модуля, подключенного к последовательному порту. Arduino должен ответить командой "!! "

Команда: ? V

Данная команда используется для получения версии скетча. Arduino отвечает строковым параметром, определенным как константа в начале скетча :

#define VERSION "1.0"

Команда: ? T

Данная команда, используемая для получения фактической даты и времени, считывается из модуля RTC. Плата Arduino отвечает строковым параметром в формате: dd/ MM/ yyyy hh: mm: ss .

Команда: ! TddMMyyyyhhmmss

Данная команда используется для установки времени RTC. Arduino отвечает командой "OK" .

Графический интерфейс пользователя (GUI)

Графический интерфейс пользователя, разработанный на C#, общается с Arduino по вышеуказанному протоколу и выполняет три функции:

  • устанавливает текущую дату и время
  • устанавливает требуемую дату и время, которые определяет пользователь
  • получает и отображает фактическую дату и время модуля RTC.

Сначала вам необходимо выбрать последовательный порт Arduino для установки соединения и нажать кнопку CONNECT. Если соединение установлено (команды ## и?V), тогда в строке состояния будет отображаться версия скетча.

В первом окне будет показано фактическое время ПК . После нажатия правой кнопки мыши (на красной стрелке) вы сможете сконфигурировать модуль RTC с данным временем:

С помощью кнопки с зеленой стрелкой вы сможете получить фактическое время, хранимое в модуле RTC:

И, наконец, с помощью выпадающего списка даты в центре, вы сможете выбрать требуемое значение даты и времени, и затем отправить эти значения в модуль RTC:

Технические данные

Я использовал метод, описанный в данном учебном руководстве , для внедрения пользовательского шрифта в приложение.

Купил я на Aliexpress плату Tiny RTC I2C Modules за 30 рублей.


Очень полезным девайсом оказалась плата Tiny RTC I2C Modules. Как только представлю картину с подключением на макетной плате двух микросхем с обвязкой, то становится немного не по себе от количества ненадежных соединений. Плату Tiny RTC I2C Modules очень удобно использовать для работы с микросхемой ds1307Z часов реального времени с последовательным интерфейсом I2C, микросхемой памяти 24С32 с последовательным интерфейсом I2C, возможностью установить датчик температуры ds18b20. Так же можно получить точные прямоугольные импульсы c 7-го вывода микросхемы ds1307Z, на разъёме он отмечен буквами SQ. На схеме платы Tiny RTC I2C Modules трудно увидеть, что седьмой вывод микросхемы ds1307Z соединен с седьмым контактом разъёма Р1.
Схема платы Tiny RTC I2C Modules:


Перед покупкой я поискал информацию в сети интернет. Узнал, что плата изготовлялась для работы литиевым аккумулятором, который трудно купить. Покупатели платы Tiny RTC I2C Modules устанавливали в плату вместо аккумулятора литиевую батарею, и плата работала неправильно. Микросхема потребляет очень мало энергии, поэтому плату вполне можно использовать с литиевой батареей. Для этого надо выпаять с платы Tiny RTC I2C Modules следующие радиодетали: диод D1, резистор R4, а в место R6 запаять перемычку. Я удалил еще и резистор R7, ознакомившись с типовой схемой включения микросхемы ds1307.


Типовая схема включения микросхемы ds1307:


Подробнее о доработке платы Tiny RTC I2C Modules вы можете узнать из видео, записанного и опубликованного в сети товарищем Алексеем Букреевым.
Даташит на микросхему ds1307:
Я соединил плату Arduino Pro Mini с платой Tiny RTC I2C Modules и плату Arduino Pro Mini с платой USB serial adapter CH340G.




Запускаем код для определения адресов микросхем ds1307 и 24С32. Код опубликован на странице:
http://adatum.ru/skaner-shiny-i2c-dlya-arduino.html
Сам код:
#include String stringOne; void setup() { Wire.begin(); Serial.begin(9600); while (!Serial); } void loop() { byte error, address; int nDevices; Serial.println("Scanning..."); nDevices = 0; for(address = 1; address < 127; address++) { Wire.beginTransmission(address); error = Wire.endTransmission(); if (error == 0) { String stringOne = String(address, HEX); Serial.print("0x"); Serial.print(stringOne); Serial.print(" - "); if(stringOne=="0A") Serial.println(""Motor Driver""); if(stringOne=="0F") Serial.println(""Motor Driver""); if(stringOne=="1D") Serial.println(""ADXL345 Input 3-Axis Digital Accelerometer""); if(stringOne=="1E") Serial.println(""HMC5883 3-Axis Digital Compass""); if(stringOne=="5A") Serial.println(""Touch Sensor""); if(stringOne=="5B") Serial.println(""Touch Sensor""); if(stringOne=="5C") Serial.println(""BH1750FVI digital Light Sensor" OR "Touch Sensor"); if(stringOne=="5D") Serial.println(""Touch Sensor""); if(stringOne=="20") Serial.println(""PCF8574 8-Bit I/O Expander" OR "LCM1602 LCD Adapter" "); if(stringOne=="21") Serial.println(""PCF8574 8-Bit I/O Expander""); if(stringOne=="22") Serial.println(""PCF8574 8-Bit I/O Expander""); if(stringOne=="23") Serial.println(""PCF8574 8-Bit I/O Expander" OR "BH1750FVI digital Light Sensor""); if(stringOne=="24") Serial.println(""PCF8574 8-Bit I/O Expander""); if(stringOne=="25") Serial.println(""PCF8574 8-Bit I/O Expander""); if(stringOne=="26") Serial.println(""PCF8574 8-Bit I/O Expander""); if(stringOne=="27") Serial.println(""PCF8574 8-Bit I/O Expander" OR "LCM1602 LCD Adapter ""); if(stringOne=="39") Serial.println(""TSL2561 Ambient Light Sensor""); if(stringOne=="40") Serial.println(""BMP180 barometric pressure sensor""); if(stringOne=="48") Serial.println(""ADS1115 Module 16-Bit""); if(stringOne=="49") Serial.println(""ADS1115 Module 16-Bit" OR "SPI-to-UART""); if(stringOne=="4A") Serial.println(""ADS1115 Module 16-Bit""); if(stringOne=="4B") Serial.println(""ADS1115 Module 16-Bit""); if(stringOne=="50") Serial.println(""AT24C32 EEPROM""); if(stringOne=="53") Serial.println(""ADXL345 Input 3-Axis Digital Accelerometer""); if(stringOne=="68") Serial.println(""DS3231 real-time clock""); if(stringOne=="7A") Serial.println(""LCD OLED 128x64""); if(stringOne=="76") Serial.println(""BMP280 barometric pressure sensor""); if(stringOne=="77") Serial.println(""BMP180 barometric pressure sensor" OR "BMP280 barometric pressure sensor""); if(stringOne=="78") Serial.println(""LCD OLED 128x64""); nDevices++; } else if (error==4) { Serial.print("Unknow error at address 0x"); if (address<16) Serial.print("0"); Serial.println(address,HEX); } } if (nDevices == 0) Serial.println("No I2C devices found\n"); else Serial.println("done\n"); delay(5000); }

После запуска Arduino IDE, выбора модели платы arduino, установки последовательного порта (com31 у меня), а скопировал выше - расположенный код в окно с заменой текста. Запустил компиляцию, при этом Arduino IDE попросит сохранить папку скетча. Нажимаем на сохранение, и Arduino IDE выполнит компиляцию. Запишем программу в плату arduino и в мониторе последовательного порта увидим следующее:


Итак, мы убедились в правильности подключения плат.
Теперь для работы с микросхемой реального времени (ds1307) надо установить библиотеку «Универсальная библиотека iarduino_RTC.zip»
Файл: Универсальная библиотека iarduino_RTC.zip:
После установки библиотеки и перезагрузки Arduino IDE запускаем пример gettime:

© 2024 magnetic-shop.ru
Безопасность. Интернет. Программы. Ноутбук. Компьютеры