RFID: спорная технология будущего. Rfid или не rfid? вот в чем вопрос

Технология RFID (Radio Frequency Identification — радиочастотная идентификация) основанна на использовании радиочастотного электромагнитного излучения. RFID применяется для идентификации и учета объектов.

RFID — технология идентификации, которая предоставляет большие возможности. Наиболее распространенные RFID-метки, как и многие штрих-коды, представляют собой самоклеящиеся этикетки. Но если на штрих-коде информация хранится в графическом виде, то на метку данные заносятся и считываются при помощи радиоволн.

Как это работает

RFID-метка - миниатюрное запоминающее устройство. Она состоит из микрочипа, который хранит информацию, и антенны, с помощью которой метка передает и получает данные. Иногда RFID-метка имеет собственный источник питания (активная), но большинство меток во внешнем питании не нуждаются (пассивная).

В памяти RFID-метки хранится уникальный номер и информация. Когда метка попадает в зону регистрации, эта информация принимается RFID-считывателем.

Для передачи данных пассивные RFID-метки используют энергию поля считывателя. Накопив необходимое количество энергии, метка начинает передачу. Дистанция регистрации пассивных меток 0,05 - 8 метров, в зависимости от типа RFID-считывателя и архитектуры метки.

Где это применяется

Сфера применения RFID постоянно расширяется. Технология востребована в отраслях, где требуется контроль перемещения объектов, интеллектуальные решения автоматизации, способность работать в жестких условиях эксплуатации, безошибочность, скорость и надежность.

На производстве с помощью RFID ведется учет сырья, контролируются технологические операции, обеспечиваются принципы JIT/JISи FIFO. RFID-решения на производстве обеспечивают высокий уровень и стабильность качества продукции.

На складе с помощью RFID в реальном времени отслеживается перемещение товаров, ускоряются процессы приема и отгрузки, повышается надежность и прозрачность операций и снижается влияние человеческого фактора. RFID-решения на складе обеспечивает защиту от воровства и хищений продукции.

В индустрии потребительских товаров и розничных продаж RFID-системы отслеживают товар на этапах поставки, от производителя до прилавка. Товар вовремя выставляется на полку, не залеживается на складе и отправляется в те магазины, где на него высокий спрос.

В библиотеке RFID помогает найти в хранилище и выдать читателю книги, предотвратить хищения. Исчезают очереди на выдаче. Сокращается время подбора и поиска нужного издания, упрощается инвентаризация.

RFID-метки применяются в маркировке шуб и других меховых изделий. Каждое изделие маркируется Контрольным (идентификационным) знаком (КиЗ) со встроенной в него RFID-меткой.

Множество областей бизнеса и повседневной жизни можно улучшить благодаря RFID-технологии. Потенциал применения RFID огромен.

Компоненты RFID-системы

  • RFID-метки — устройства, способные хранить и передавать данные. В памяти меток содержится уникальный идентификационный код. У некоторых RFID-меток память может перезаписываться.
  • RFID-считыватели — приборы, которые читают информацию с меток и записывают в них данные. Подключаются к учетной системе и работают автономно.
  • Учетная система — программное обеспечение, которое накапливает и анализирует полученную с меток информацию и связывает все элементы в единую систему. Современные учетные системы (программы семейства 1С, корпоративные информационные системы — MS Axapta, R3Com) совместимы с RFID-технологией и не требуют специальной доработки.

Преимущества радиочастотной идентификации

  1. Данные RFID-метки перезаписываются и дополняются много раз, тогда как данные на штрих-коде неизменны — они записываются сразу при печати.
  2. RFID-считывателю не требуется прямая видимость метки, чтобы считать ее данные. Взаимная ориентация метки и считывателя не играет роли. Метки читаются через упаковку, что делает возможным скрытое размещение. Для чтения данных метке достаточно попасть в зону регистрации, в том числе при перемещении на высокой скорости. Устройству считывания штрих-кода необходима прямая видимость штрих-кода для чтения.
  3. RFID-метка считывается на значительно большем расстоянии, чем штрих-код. В зависимости от модели метки и считывателя радиус считывания составляет до нескольких десятков метров.
  4. . RFID-метка может хранить значительно больше информации, чем штрих-код. До 10 000 байт могут храниться на микросхеме площадью в 1 квадратный сантиметр, а штриховые коды вмещают 100 байт (знаков) информации, для воспроизведения которых понадобится площадь размером с лист формата А4.
  5. Промышленные RFID-считыватели одновременно считывают десятки RFID-меток в секунду, используя антиколлизионную функцию. Устройство считывания штрих кода может единовременно сканировать только один штрих-код.
  6. Для автоматического считывания штрихового кода, комитетами по стандартам (в том числе EAN International) разработаны правила размещения штрих-кодов на товарной и транспортной упаковке. К радиочастотным меткам эти требования не относятся. Единственное условие — нахождение метки в зоне действия RFID-считывателя.
  7. RFID-метки обладают повышенной прочностью и сопротивляемостью жестким условиям среды, а штрих-код легко повреждается (например, влагой или загрязнением). В тех сферах, где один и тот же объект используется много раз (например, при идентификации паллет или возвратной тары), радиочастотная метка - лучшее средство идентификации, так как не требует размещение на внешней стороне упаковки. Пассивные RFID-метки неограничены сроком эксплуатации.
  8. RFID-метка используется не только как хранитель информации, это интеллектуальное устройство широкого спектра применения с уникальным идентификатором. У штрих-кода нет интеллекта и он просто хранит данные.
  9. Неизменяемое число-идентификатор, присваиваемое метке при производстве, гарантирует защиту меток от подделки. Данные на метке легко шифруются. Как цифровое устройство, радиочастотная метка при необходимости защищается паролем и зашифровывается. В одной метке можно одновременно хранить открытые и закрытые данные.

Что нужно помнить при внедрении RFID

При работе с радиочастотной идентификацией нужно учитывать некоторые ограничения: относительно высокая стоимость, невозможность размещения под металлическими и экранирующими поверхностями, взаимные коллизии.

Относительно высокая стоимость RFID-меток. Цена пассивной RFID-метки начинается с 0,15 доллара (при приобретении свыше 1 000 000 шт.) до 3 долларов (при приобретении 1 шт.). В случае с метками защищенного исполнения (или на металл) эта цена достигает 7 долларов и выше. Таким образом, стоимость RFID-меток выше стоимости этикеток со штриховым кодом. Использование радиочастотных меток целесообразно для защиты дорогих товаров от краж или для сохранности изделий, переданных на гарантийное обслуживание. В логистике и транспортировке грузов стоимость радиочастотной метки незначительна по сравнению со стоимостью содержимого контейнера, поэтому использование радиочастотных меток оправдано на упаковочных ящиках, паллетах и контейнерах.

Возможное экранирование при размещении на металлических поверхностях. RFID-метки подвержены влиянию металла (это касается упаковок определенного вида — металлических контейнеров или упаковки жидких пищевых продуктов, запечатанных фольгой). Это не исключает применение RFID, но приводит к необходимости использования меток, разработанных специально для установки на металлические поверхности или к нестандартным способам закрепления меток на объекте.

RFID (Radio Frequency IDentification или радиочастотная идентификация RFID ) — это технология автоматической идентификации объектов, в которой при помощи радиосигналов считываются или записываются данные на RFID-метки, которые бесконечно долго сохраняют эту информацию.

Сами RFID-метки состоят из 2-х составляющих:

  • Интегральная схема (ИС) для хранения и обработки информации, модулирования и демодулирования радиочастотного (RF) сигнала и некоторых других функций.
  • Антенна для приёма и передачи RFID сигнала.

На нашем сайте вы найдёте множество полезных материалов по RFID технологиям.

RFID стоимость

Благодаря нашим прямым контрактам с ведущими мировыми производителями, вы можете купить RFID оборудование по самым выгодным ценам с доставкой по России.

Мы сотрудничаем напрямую с такими компаниями как - Confidex , Xerafy , Datamars , Alien , SATO , Zebra , Intermec , Impinj и др.

Мы сможем предложить лучшие условия на рынке на покупку RFID оборудования, как по стоимости, так и по качеству обслуживания, т.к. наши специалисты, в отличие от многих других компаний, обладают практическим опытом внедрения RFID проектов / систем, что в данном направлении бизнеса является основным параметрам, т.к. при различных условиях эксплуатации, RFID оборудование может работать по разному.

Стоимость RFID систем и услуг по их внедрению зависит напрямую от деталей проекта и определяется индивидально под каждого заказчика.

Все цены на RFID оборудование указаны на нашем сайте ориентировочно, для того, чтобы вы смогли оценить приблизительный бюджет проекта, но итоговая стоимость будет подсчитана нашими менеджерами по результатам проработки вашей спецификации, которую мы также можем помочь составить с рассмотрением всех возможных аналогов, которые существуют на современном рынке RFID оборудования.

Мы знаем про RFID всё!

RFID оборудование

Типовая система RFID состоит из следующих модулей:

  • Радиочастотные метки с вшитой в них информацией об объекте;
  • Специальные антенны (одно- и мультиэлементные, а также ближнепольные) для отправки и получения сигналов;
  • Приемно-считывающие устройства (стационарные считыватели / ридеры или мобильные, такие как терминалы сбора данных); С помощью данных устройств, происходит программирование RFID меток и запись на них необходимой информации.
  • Оборудование для обработки данных.

Метки состоят из получающего сигналы от считывателя приемника, передающего модуля, антенны и блока памяти для хранения данных. Получая сигнал от внешнего устройства, они посылают в ответ собственный со всей необходимой информацией. Эти компоненты классифицируются по типу источника питания, наличию чипа, способу хранения данных (уникальная подпись или цифровое кодирование) и записи (только для считывания, однократно и многократно записываемые). Использование меток с возможностью многократной перезаписи позволяет изменять, дополнять и заменять хранящуюся на них информацию.

RFID частоты

Существует 3 типа RFID частот.

  • LF RFID - частоты 125-134 кГц

В данном диапазоне частот работают только пассивные системы. Они имеют низкую стоимость и по своим физическим характеристикам используются для вживления подкожных RFID меток животным, людям и рыбам. Метки LF RFID имеют существенные ограничения по радиусу действия и точности (так называемые «коллизии» при считывании).

  • HF RFID - частота 13.56 МГц

Системы HF RFID являются достаточно дешевыми, не имеют экологических проблем, хорошо стандартизованы и имеют широкую линейку решений. Данные системы применяются в платежных системах, логистике, идентификации личности. Для частоты 13,56 МГц разработан стандарт ISO 14443 (виды A/B). В данном стандарте обеспечена система диверсификации ключей, что позволяет создавать открытые системы. Используются стандартизованные алгоритмы шифрования. Так же, как и в диапазоне LF RFID, в HF RFID -системах, существуют проблемы, связанные со считыванием на больших расстояниях, в условиях высокой влажности, в окружении металла и появление коллизий.

  • UHF RFID - частоты 860-960 МГц

UHF RFID системы обладают наибольшей дальностью действия. В данном диапазоне разработаны антиколизионные механизмы. Изначально ориентированные на использование в складской и производственной логистике, UHF-метки не имели уникального идентификатора. Предполагалось, что идентификатором для метки будет служить EPC-номер (Electronic Product Code) товара, который каждый производитель будет заносить в метку самостоятельно при производстве. Однако скоро стало ясно, что помимо функции носителя EPC-номера товара хорошо бы возложить на метку еще и функцию контроля подлинности. То есть возникло требование, противоречащее самому себе: одновременно обеспечить уникальность метки и позволить производителю записывать произвольный EPC-номер.

Стоят UHF-метки дешевле, чем их собратья из диапазонов LF и HF RFID, но в целом RFID-система UHF дороже за счет стоимости остального оборудования (считывателя, антенн). В настоящее время частотный диапазон UHF открыт в Российской Федерации в «европейском» диапазоне — 863—868 МГЦ.

Применение RFID

Благодаря характеристикам RFID технологию радиочастотной идентификации можно использовать в различных сферах бизнеса. Особенно на складах и торговле. Основными направлениями применения RFID являются:

  • Учет основных средств организации;
  • Платежные системы, например оплата дорожных пошлин без остановки транспортного средства или плата за проезд в общественном транспорте.
  • Сфера безопасности (ключи доступа);
  • Производственные предприятия (в первую очередь, для контроля за перемещениями транспорта и упаковки);
  • В животноводстве системы RFID используются для идентификации отдельных особей, контроля их перемещений, изменения массы и других показателей;
  • В торговле технология RFID позволяет автоматизировать учет продукции и контроль выполнения различных операций;
  • При посещении аквапарков и подобных заведений, а также некоторых мероприятий, посетители получают специальные RFID браслеты / брелки, с помощью которых оплачивают предоставляемые услуги.

Преимущества RFID технологии

Основными недостатками RFID-технологии являются невозможность размещения меток под металлическими и токопроводящими поверхностями из-за экранирования электромагнитного поля, взаимные коллизии однотипных товаров, подверженность внешним электромагнитным воздействиям, высокая стоимость. Однако эти недостатки перекрываются многочисленными достоинствами:

  • Высокая надежность компонентов, длительный срок эксплуатации, отсутствие механического износа;
  • Бесконтактное считывание на расстоянии до нескольких метров;
  • Возможность скрытного размещения не извлекаемых идентификаторов;
  • Независимость от условий внешней среды;
  • Высокая скорость записи и считывания данных;
  • Автоматическая обработка полученной информации;
  • Возможность одновременного считывания и обработки данных с нескольких идентификаторов;
  • Высокий уровень защиты от подделок;
  • Простота использования и обслуживания.

Купить RFID

Предлагаем вам купить RFID технологии и оборудование для вашего бизнеса.

У нашей компании большой опыт по внедрению RFID систем и программных продуктов.

Вашему вниманию предлагается полный спектр RFID меток и считывателей, а также услуги по их установке и настройке. Мы гарантируем максимальную совместимость индивидуально подбираемого оборудования и программных решений, разрабатываемых для Заказчика.

У нас можно приобрести RFID оборудование по самым выгодным ценам в Москве с доставкой по всей России.

Пока в стране идут новогодние праздники и все отдыхают наконец соберу весь накопленный материал в одну кучку. Я давно не писал в блог, постараюсь исправиться в нынешнем году. Я не пишу о политике, философии, событиях моей жизни, только о железках. Увы о железах на работе я писать не могу в силу определенных причин, но копится материал научно-популярного и просветительского толка. Очень сложно написать лучше, чем уже написано в той же википедии.

RFID – R adio F requency ID entification – радиочастотная идентификация. На сегодня RFID метки это более широкое понятие и сюда приплетают в том числе и беспроводные сенсоры, хотя идентификация – не их основное занятие. RFID метка – это небольшое устройство, которое позволяет на расстоянии, в отсутствие прямой видимости считать сохраненные на нем данные, тем самым идентифицировать объект. Это как штрихкод, наклеенный на товар, только работающий по радио.

RFID метки бывают разных типов. По способу электропитания различают пассивные (полностью получают питание для работы от излучения считывателя) и активные (имеют на себе батарейку). Само собой у пассивных дальность действия ниже, зато срок службы ничем не ограничен. У активных все лучше, и дальность действия, и начинка поинтеллектуальнее, но батарейку нужно будет менять.

По радиочастотному диапазону различают LF (125 кГц), HF (13.56 МГц) и UHF (860-960 МГц).

Принцип действия

Считыватель и метка имеют катушки индуктивности, образующие колебательный контур. Когда считыватель создает переменное магнитное поле своей катушкой, магнитный поток проходя через катушку метки возбуждает в ней ток. Точно так же как работает к примеру беспроводная зарядка. Метка от возбужденного в катушке тока получает питание, и используя транзистор может на некоторое время (питаясь в это время от накопленного в конденсаторе заряда) замыкать катушку накоротко, тем самым меняя значение амплитуды тока в катушке считывателя. Считыватель фиксирует эти изменения, тем самым принимая сигнал от метки.

Устройства UHF диапазона работают аналогично, только вместо катушек – диполи:

(Иллюстрация из книги RFID Handbook by Klaus Finkenzeller 2 редакция)

Само собой это означает что весь обмен данными между меткой и считывателем происходит публично, и при решении задач определения подлинности нужно это учитывать.

Активные метки более разнообразны по устройству, некоторые вообще по сути являются радиомаяками, по несколько раз в секунду просто посылая в эфир свой номер (parsec). RFID метка помимо микроконтроллера, обеспечивающего передачу уникального номера может быть оснащена различными датчиками. Например датчиком давления. Такой датчик можно разместить в шину автомобиля и непрерывно контролировать давление воздуха в шине.

С каждым днем RFID меткам находят все больше применений. Начиная от использования в качестве ключей для домофона заканчивая противокражными метками в магазинах самообслуживания. Именно увеличение спроса, снижение стоимости из-за массового производства позволяет находить все новые и новые применения.

Метка передает считывателю в ответе на запрос свой уникальный номер. Более сложные метки имеют немного памяти на борту и могут хранить какую либо информацию, например количество оставшихся поездок, что избавляет от необходимости создания центрального сервера и поддержки его на связи всегда. Метка также может иметь на борту криптопроцессор и обеспечивать проверку подлинности или обмен секретными данными. Изучается вопрос добавления RFID меток к банкноты как дополнительная мера защиты.

В будущем возможно все продукты будут снабжены RFID метками на стадии производства, а холодильник RFID считывателем. Тогда взяв вечером спросонья из холодильника пакет молока он молвит человеческим голосом “Сдурел? Выкинь, оно во мне уже пол года лежит, испортилось давно”.

Примеры

Екарта – проездная карточка на все виды транспорта в г.Екатеринбурге. Представляет собой карточку Mifare. Внешний вид:

Немного ацетоновых ванн и видно катушку индуктивности по периметру. Система полностью децентрализованная и информация о количестве денег хранится на самой карте в зашифрованном виде.

Московский метрополитен. Конструкция попроще для удешевления, карточка одноразовая:

Брелок от домофона “Факториал”

Внутри тоже RFID чип от Texas Instruments

При этом при каждом открывании двери данные в ключе перезаписываются, таким образом невозможно увеличить количество ключей. Копия будет работать, но после первого открывания перестанет работать оригинал, так как данные в ключе меняются. Этим хитрым апгрейдом факториал разом сделал бизнес копирования домофонных ключей невозможным.

Активные метки parsec

Представляют собой герметичный контейнер с микроконтроллером, батарейкой и радиомодулем, который посылает в эфир пару раз в секунду свой уникальный номер. Закрепив такой на автомобиле можно определять какие авто на данный момент сейчас находятся к примеру в гараже. Основная задача этих меток в автоматическом открывании ворот и шлагбаумов.

При этом вариант на последнем фото снабжен еще и пассивной меткой, можно повесить как брелок для ключей, и открывать не только ворота но и двери.

Правда безопасность автомобиля, основанная на наличии такой метки уязвима .

Если разберем ключ от автомобиля то найдем в нем чип иммобилайзера, который по сути тоже RFID метка:

Справа на крышке. Надежность и секретность механических замков ограничивается точностью механической обработки и достигла своего предела. Электронные замки и ключи имеют значительно большее число комбинаций.

RFID метки могут внедряться на стадии производства, например гитар:

Производитель таким образом не только облегчает себе отслеживание продукции на складах, но и гарантирует себе способ отличить свою продукцию от подделок.

Вот шапка с RFID меткой пришитой при производстве:

Еще одна от куртки:

Немного растворителей и достаем метки:

Отдельного слова заслуживают так называемые противокражные метки, или 1-битные транспондеры. Это RFID метка которая передает всего 1 бит – информацию о своем наличии. Такие метки используются для защиты товара от краж. Я про одну такую. Чаще всего встречаются метки электромагнитной системы (метка – колебательный контур), и акустомагнитной. Метки других типов в наших краях встречаются редко.

Если вы параноик

Возможно вам пригодится RFID Zapper . Перманентно отключить метку можно также в микроволновке, просто включив на пару секунд. Пассивные метки считываются на расстоянии в несколько метров (для LF и HF вообще не более 20 см). Что бы считать метку на расстоянии 100 метров в считыватель придется закачивать неприлично большие мощности.

Уже известные приложения RFID (бесконтактные карты в системах контроля и управления доступом, системах дальней идентификации и в платёжных системах) получают дополнительную популярность с развитием интернет -услуг.

История RFID-меток

Технология, наиболее близкая к данной - система распознавания «свой-чужой» IFF (Identification Friend or Foe), изобретённая Исследовательской лабораторией ВМС США в 1937 году . Она активно применялась союзниками во время Второй мировой войны, чтобы определить, своим или чужим является объект в небе. Подобные системы до сих пор используются как в военной, так и в гражданской авиации.

Ещё одной вехой в использовании RFID-технологии является послевоенная работа Гарри Стокмана (Harry Stockman ) под названием «Коммуникации посредством отражённого сигнала» (англ. "Communication by Means of Reflected Power" ) (доклады IRE , стр. 1196-1204, октябрь 1948) . Стокман отмечает, что «…значительные работы по исследованию и разработке были сделаны до того, как были решены основные проблемы в связи посредством отражённого сигнала, а также до того, как были найдены области применения данной технологии» .

Первая демонстрация современных RFID-чипов (на эффекте обратного рассеяния), как пассивных, так и активных, была проведена в Исследовательской лаборатории Лос-Аламоса (англ. Los Alamos Scientific Laboratory ) в 1973 году . Портативная система работала на частоте 915 МГц и использовала 12-битные метки.

Классификация RFID-меток

Существует несколько способов систематизации RFID-меток и систем :

По источнику питания

По типу источника питания RFID-метки делятся на :

  • Пассивные
  • Активные
  • Полупассивные

Пассивные

Пассивные RFID-метки не имеют встроенного источника энергии . Электрический ток , индуцированный в антенне электромагнитным сигналом от считывателя, обеспечивает достаточную мощность для функционирования кремниевого КМОП -чипа, размещённого в метке, и передачи ответного сигнала.

Коммерческие реализации низкочастотных RFID-меток могут быть встроены в стикер (наклейку) или имплантированы под кожу (см. VeriChip).

Компактность RFID-меток зависит от размеров внешних антенн, которые по размерам превосходят чип во много раз и, как правило, определяют габариты меток. Наименьшая стоимость RFID-меток, которые стали стандартом для таких компаний, как Wal-Mart , Target , Tesco в Великобритании, Metro AG в Германии и Министерства обороны США , составляет примерно 5 центов за метку фирмы SmartCode (при покупке от 100 млн штук) . К тому же, из-за разброса размеров антенн, и метки имеют различные размеры - от почтовой марки до открытки. На практике максимальная дистанция считывания пассивных меток варьируется от 10 см (4 дюймов) (согласно стандарту ISO 14443) до нескольких метров (стандарты EPC и ISO 18000-6), в зависимости от выбранной частоты и размеров антенны. В некоторых случаях антенна может быть изготовлена печатным способом.

Производственные процессы от Alien Technology под названием Fluidic Self Assembly , от SmartCode - Flexible Area Synchronized Transfer (FAST) и от Symbol Technologies - PICA направлены на дальнейшее уменьшение стоимости меток за счёт применения массового параллельного производства. Alien Technology в настоящее время использует процессы FSA и HiSam для изготовления меток, в то время как PICA - процесс от Symbol Technologies - находится ещё на стадии разработки. Процесс FSA позволяет производить свыше 2 миллионов ИС пластин в час, а PICA процесс - более 70 миллиардов меток в год (если его доработают). В этих технических процессах ИС присоединяются к пластинам меток, которые в свою очередь присоединяются к антеннам, образуя законченный чип. Присоединение ИС к пластинам и в дальнейшем пластин к антеннам - самые пространственно чувствительные элементы процесса производства. Это значит, что при уменьшении размеров ИС-монтаж (англ. Pick and place ) станет самой дорогой операцией. Альтернативные методы производства, такие как FSA и HiSam, могут значительно уменьшить себестоимость меток. Стандартизация производства (англ. Industry benchmarks ) в конечном счёте приведёт к дальнейшему падению цен на метки при их широкомасштабном внедрении.

Некремниевые метки могут изготавливаться из полимерных полупроводников . В настоящее время их разработкой занимаются несколько компаний по всему миру. Метки, изготавливаемые в лабораторных условиях и работающие на частотах 13,56 МГц, были продемонстрированы в 2005 году компаниями PolyIC (Германия) и Philips (Голландия). В промышленных условиях полимерные метки будут изготавливаться методом прокатной печати (технология напоминает печать журналов и газет), в результате чего они будут дешевле, чем метки на основе ИС. В конечном счёте это может закончиться тем, что для большинства сфер применения метки станут печатать так же просто, как и штрих-коды , и они станут такими же дешёвыми.

Активные метки обычно имеют гораздо больший радиус считывания (до 300 м) и объём памяти, чем пассивные, и способны хранить больший объём информации для отправки приёмопередатчиком.

Полупассивные

Полупассивные RFID-метки, также называемые полуактивными, очень похожи на пассивные метки, но оснащены батареей, которая обеспечивает чип энергопитанием . При этом дальность действия этих меток зависит только от чувствительности приёмника считывателя и они могут функционировать на большем расстоянии и с лучшими характеристиками.

По типу используемой памяти

По типу используемой памяти RFID-метки делятся на :

  • RO (англ. Read Only ) - данные записываются только один раз, сразу при изготовлении. Такие метки пригодны только для идентификации. Никакую новую информацию в них записать нельзя, и их практически невозможно подделать.
  • WORM (англ. Write Once Read Many ) - кроме уникального идентификатора такие метки содержат блок однократно записываемой памяти, которую в дальнейшем можно многократно читать.
  • RW (англ. Read and Write ) - такие метки содержат идентификатор и блок памяти для чтения/записи информации. Данные в них могут быть перезаписаны многократно.

По рабочей частоте

Метки диапазона LF (125-134 кГц)

Пассивные системы данного диапазона имеют низкие цены и в связи с физическими характеристиками используются для подкожных меток при чипировании животных и людей. Однако, в связи с длиной волны, существуют проблемы со считыванием на большие расстояния, а также проблемы, связанные с появлением коллизий при считывании.

Метки диапазона HF (13,56 МГц)

Системы 13 МГц дешевы, не имеют экологических и лицензионных проблем, хорошо стандартизованы, имеют широкую линейку решений. Применяются в платежных системах, логистике, идентификации личности. Для частоты 13,56 МГц разработан стандарт ISO 14443 (виды A/B). В отличие от Mifare 1К, в данном стандарте обеспечена система диверсификации ключей, что позволяет создавать открытые системы. Используются стандартизованные алгоритмы шифрования.

На основе стандарта 14443 В разработано несколько десятков систем, например, система оплаты проезда общественного транспорта Парижского региона.

Для существовавших в данном диапазоне частот стандартов были найдены серьёзные проблемы в безопасности: совершенно отсутствовала криптография у дешёвых чипов карты Mifare Ultralight , введённая в использование в Нидерландах для системы оплаты проезда в городском общественном транспорте OV-chipkaart , позднее была взломана считавшаяся более надёжной карта Mifare Classic .

Как и для диапазона LF, в системах, построенных в HF-диапазоне, существуют проблемы со считыванием с больших расстояний, считывание в условиях высокой влажности, наличия металла, а также проблемы, связанные с появлением коллизий при считывании.

Метки диапазона UHF (860-960 МГц)

Метки данного диапазона обладают наибольшей дальностью регистрации, во многих стандартах данного диапазона присутствуют антиколлизионные механизмы . Ориентированные изначально для нужд складской и производственной логистики, метки диапазона UHF не имели уникального идентификатора. Предполагалось, что идентификатором для метки будет служить EPC-номер (Electronic Product Code ) товара, который каждый производитель будет заносить в метку самостоятельно при производстве. Однако скоро стало ясно, что помимо функции носителя EPC-номера товара хорошо бы возложить на метку ещё и функцию контроля подлинности. То есть возникло требование, противоречащее самому себе: одновременно обеспечить уникальность метки и позволить производителю записывать произвольный EPC-номер.

Долгое время не существовало чипов, которые бы удовлетворяли этим требованиям полностью. Выпущенный компанией Philips чип Gen 1.19 обладал неизменяемым идентификатором, но не имел никаких встроенных функций по паролированию банков памяти метки, и данные с метки мог считать кто угодно, имеющий соответствующее оборудование. Разработанные впоследствии чипы стандарта Gen 2.0 имели функции паролирования банков памяти (пароль на чтение, на запись), но не имели уникального идентификатора метки, что позволяло при желании создавать идентичные клоны меток.

Наконец, в 2008 году компания NXP выпустила два новых чипа , которые на сегодняшний день отвечают всем выше перечисленным требованиям. Чипы SL3S1202 и SL3FCS1002 выполнены в стандарте EPC Gen 2.0 , но отличаются от всех своих предшественников тем, что поле памяти TID (Tag ID ), в которое при производстве обычно пишется код типа метки (и он в рамках одного артикула не отличается от метки к метке), разбито на две части. Первые 32 бита отведены под код производителя метки и её марку, а вторые 32 бита - под уникальный номер самого чипа. Поле TID - неизменяемое, и, таким образом, каждая метка является уникальной. Новые чипы имеют все преимущества меток стандарта Gen 2.0. Каждый банк памяти может быть защищен от чтения или записи паролем, EPC-номер может быть записан производителем товара в момент маркировки .

В UHF RFID-системах по сравнению с LF и HF ниже стоимость меток, при этом выше стоимость прочего оборудования.

В настоящее время частотный диапазон УВЧ открыт для свободного использования в Российской Федерации в так называемом «европейском» диапазоне - 863-868 МГЦ.

Радиочастотные UHF-метки ближнего поля

По сравнению с переносными, считыватели такого типа обычно обладают большей зоной чтения и мощностью и способны одновременно обрабатывать данные с нескольких десятков меток. Стационарные считыватели подключаются к ПЛК , интегрируются в DCS или подключаются к ПК. Задача таких считывателей - поэтапно фиксировать перемещение маркированных объектов в реальном времени, либо идентифицировать положение меченых предметов в пространстве .

Мобильные

Обладают сравнительно меньшей дальностью действия и зачастую не имеют постоянной связи с программой контроля и учёта. Мобильные считыватели имеют внутреннюю память, в которую записываются данные с прочитанных меток (потом эту информацию можно загрузить в компьютер) и, как и стационарные считыватели, способны записывать данные в метку (например, информацию о произведённом контроле) .

В зависимости от частотного диапазона метки, дистанция устойчивого считывания и записи данных в них будет различна.

RFID и альтернативные методы автоматической идентификации

16.01.2014

Аббревиатура RFID расшифровывается как Radio Frequency Identification (в переводе с английского: радиочастотная идентификация). RFID (метод радиочастотной идентификации) – технология, которая для автоматической идентификации объектов использует радиоволны. Она может распознавать не только живые существа, но и неодушевленные предметы, к примеру, транспортные средства, контейнеры, одежду и многое другое. Другим примером Auto-ID являются штрих коды или биометрические методы (сканирование сетчатки глаза, использование отпечатков пальцев), а также система оптического распознавания символов и идентификация голоса.

Технология RFID широко применялась еще во времена Великой Отечественной войны. Тогда на самолетах только появились первые системы опознавания, которые позволяли распознавать и отличать свои воздушные войска от войск противника. После окончания войны технология больше не имела коммерческого успеха, но за последние годы все круто изменилось. Ею заинтересовались транспортные и логистические компании, что вывело стандарт на новый уровень.

Где используется технология RFID?

Решения на основе RFID можно использовать:

  • В сфере розничной торговли: для контроля за перемещением товара между складом и магазином, предотвращения краж, удобства проведения инвентаризации.
  • В отрасли производства и продажи меховых изделий: для обязательной маркировки шуб и меховых изделий контрольным идентификационным знаком.
  • В складских и логистических комплексах: для отслеживания перемещения товаров, увеличения скорости приемки и отгрузки, снижения влияния человеческого фактора.
  • На производствах: для контроля за персоналом и транспортом, обеспечения безопасности и предотвращения нештатных ситуаций, учета сырья.
  • В системах контроля доступа и платежных системах: для реализации бесконтактного автоматического доступа, оплаты услуг с помощью терминалов.

Применение технологии RFID:

  • приложения контроля доступа;
  • приложения контроля и учета рабочего времени ;
  • идентификация транспортных средств;
  • автоматизация производства;
  • автоматизация складской обработки.

Принцип работы RFID

Основа работы технологии: взаимодействие RFID-метки (RFID-тега) и RFID-считывателя (RFID-ридера). RFID-метка – миниатюрный чип, который хранит уникальный номер тега и информацию и обладает возможностью для передачи данных RFID-ридеру. Как только RFID-метка попадает в зону действия RFID-ридера, ридер фиксирует факт передачи данных, считывает информацию с метки и передает ее в учетную систему, которая анализирует данные по заранее заданным алгоритмам.

При этом между RFID-меткой и RFID-ридером может быть расстояние до 300 метров (системы, работающие на расстоянии от 5 до 300 метров относят к системам дальней идентификации, от 20 см до 5 м – идентификации средней дальности, до 20 см – системы ближней идентификации).

Преимущества технологии RFID

  • Большое расстояние считывания
  • Независимость от ориентации метки и ридера
  • Скорость и точность идентификации
  • Возможность работы через материалы, пропускающие радиоволны, нет необходимости в прямой видимости
  • Возможность считывания метки с двигающегося объекта
  • Возможность хранения дополнительной информации на метке и ее перезаписи
  • Сложность подделки RFID-меток
  • Одновременное чтение нескольких меток (при наличии антиколлизионной фунции)
  • Устойчивость к воздействиям окружающей среды, длительный срок эксплуатации

Система RFID состоит из:

  • RFID-Считыватель;
  • RFID-Метка;
  • Программное обеспечение.

Считыватель занимается генерированием и распространением электромагнитных волн в окружающее пространство. Данный сигнал принимается RFID-меткой, которая создает обратный сигнал, улавливающийся антенной считывающего устройства, затем полученная информация расшифровывается и обрабатывается электронным блоком. Объект, оснащенный RFID-меткой, идентифицируется с помощью уникального цифрового кода, который хранится в памяти электронной метки. К примеру, можно в считанные секунды получить индивидуальные данные пользователя или идентификационный номер того или иного товара.

RFID-метки: классификация

Источник питания

Основная используемая классификация RFID-меток основана на источнике питания – согласно ей, теги делятся на пассивные, активные и полупассивные.

Пассивные RFID-метки не имеют собственного источника питания и используют для работы энергию поля считывателя. В зависимости от архитектуры RFID-метки и типа ридера, пассивные теги работают только на небольшом расстоянии - до 8 метров, но при этом отличаются компактностью и доступной ценой.

Именно пассивные низкочастотные RFID-метки наиболее часто встречаются нам на товарах в магазинах – над повышением компактности тегов и снижением их стоимости работают представители ведущих мировых торговых сетей.

Активные RFID-метки оснащены собственным источником питания, поэтому могут получить дополнительные функции, работают на большем расстоянии и менее требовательны к считывателю. К их недостаткам, по сравнению с пассивными метками, можно отнести большой размер и ограниченное время работы источника питания (правда, на сегодняшний день речь идет о сроке жизни батареи до 10 лет), однако они незаменимы там, где необходим большой радиус работы (до 300 метров).

Активные RFID-метки по праву считаются более надежными, они могут передавать сигнал даже через воду или металл, а также их можно оснастить встроенными сенсорами для оценки температуры, влажности, уровня освещенности и других параметров окружающей среды. Таким образом, RFID-метки могут помочь отслеживать, к примеру, соблюдение условий хранения определенных категорий товаров.

Полупассивные RFID-метки работают по тому же принципу, что и пассивные, но оснащены батареей для питания чипа. Можно сказать, что такое решение является компромиссным в плане стоимости, размера и характеристик RFID-меток.

Исполнение

По исполнению RFID-метки могут представлять собой пластиковые карты, брелоки, корпусные метки, а также самоклеящиеся этикетки из бумаги или термопластика. Существует также формат «невидимой» этикетки, которая фактически вшивается в упаковку товара непосредственно на этапе производства.

Тип памяти

По типу памяти RFID-метки делятся на предназначенные только для идентификации (RO, Read Only), разработанные для считывания блока информации (WORM, Write Once Read Many) и перезаписываемые (RW, Read and Write).

RO RFID-метки используются исключительно для идентификации – данные уникального идентификатора записываются при изготовлении тега, поэтому скопировать их и подделать метку практически невозможно.

WORM RFID-метки позволяют однократно записать какие-либо данные, которые впоследствии можно будет многократно считывать и использовать. Это позволяет пользователю при получении дополнить метку своей информацией, которая затем будет использоваться при считывании.

RW RFID-метки содержат блок памяти, который позволяет многократно записывать и считывать информацию. Идентификатор RFID-метки при этом остается неизменным.

Рабочая частота

Классификация RFID-меток по рабочей частоте выглядит следующим образом:

  • Метки диапазона LF (125-134 кГц)

Характеризуются доступными ценами и определенными физическими характеристиками, которые позволяют использовать такие RFID-метки для чипирования животных. Обычно это – пассивные системы, которые работают только на маленьких расстояниях.

  • Метки диапазона HF (13,56 МГц)

RFID-метки такой частоты используются в основном для идентификации личности, в платежных системах, для решения простых бизнес-задач (например, для идентификации продукции на складе). Большинство RFID-систем, работающих на частоте 13,56 МГц, работает в соответствии со стандартом ISO 14443 (A/B) – именно на этом стандарте работает, к примеру, система оплаты проезда в общественном транспорте Парижа.

К недостаткам RFID-систем описанного диапазона можно отнести отсутствие достойного уровня безопасности, а также возможные проблемы со считыванием на большом расстоянии, в условиях высокой влажности, через металлические проводники.

  • Метки диапазона UHF (860-960 МГц)

Разработанные специально для работы с товарами на складах и в логистических системах, RFID-метки этого диапазона изначально не имели собственного уникального идентификатора. Предполагалось, что в качестве него будет использоваться EPC-номер товара, однако это не позволило бы контролировать подлинность метки, поэтому развитие систем на базе UHF-диапазона позволило усовершенствовать систему.

При этом к особенностям RFID-меток указанного диапазона относится высокая дальность и скорость работы и наличие антиколлизионных механизмов. Сегодня стоимость RFID-меток диапазона UHF является минимальной, однако цена прочего оборудования для работки в обозначенном диапазоне достаточно велика.

К отдельной категории UHF RFID-меток можно отнести теги ближнего поля. Используя магнитное поле антенны, технически они не относятся к радиометкам и могут считываться при высокой влажности и в присутствии металла. Массовое применение меток ближнего поля ожидается, например, в работе с фармацевтическими товарами, нуждающимися в контроле подлинности и строгом учете.

Разновидности RFID меток

Электронные метки бывают активными и пассивными. Активные идентификаторы снабжены собственным источником питания, дальность считывания таких устройств не зависит от энергии ридера. Пассивные метки не имеют своего источника питания, потому питаются от энергии электромагнитного сигнала, который распространяет считыватель. Дальность идентификации данных меток напрямую зависит от энергии, которую излучает ридер.

Каждый из этих видов устройств характеризуется своими преимуществами и недостатками. Пассивные метки хороши своим большим сроком эксплуатации, а также дешевизной в сравнении со своим активным аналогом. К тому же, пассивные идентифицирующие устройства не нуждаются в замене элементов питания. Недостатком устройства является необходимость в использовании более мощных считывателей.

Активные идентифицирующие устройства характеризуются высокой дальностью считывания информации в отличие от пассивных меток, а также возможностью распознавать и считывать данные при движении электронной метки на высокой скорости относительно считывающего устройства. Недостатком активных меток является высокая цена и громоздкость.

Типы RFID-идентификаторов в зависимости от рабочей частоты:

  • (ВЧ) Высокочастотные RFID-метки, работающие на частоте 13,56 МГц;
  • (УВЧ) Ультравысокочастотные RFID-метки, работающие в диапазоне частот 860-960 МГц. Данный диапазон используется в России, в Европе RFID-метки работают в диапазоне 863-868 МГц.

Способы записи информации на идентификатор (метку):

  • ReadOnly-устройства - идентификаторы, на которые можно записать информацию лишь единожды, дальнейшее изменение или удаление информации невозможно;
  • WORM-устройства - RFID-метки, которые позволяют однократно записывать и многократно считывать данные. Изначально в памяти устройства не хранится никакой информации, все необходимые данные вносит пользователь, но после записи перезаписать или удалить информацию невозможно;
  • R/W-устройства – идентификаторы, которые позволяют многократно считывать и записывать информацию. Это наиболее прогрессивная группа устройств, так как подобные метки позволяют перезаписывать и удалять ненужную информацию.

Технология RFID широко используется в производстве, розничной торговле , системах управления и контроля доступом, системах защиты от подделки документов и других областях. Она позволяет экономить время и сводит к минимуму использование ручного труда.

Особенности

Несмотря на достаточно высокую стоимость использования RFID-систем, их внедрение целесообразно везде, где важен высокий уровень безопасности и быстрая идентификация объектов. При этом особое внимание следует уделить выбору конкретного решения, который будет зависеть от множества факторов:

    Расстояние между RFID-метками и ридерами

    Наличие экранирующих поверхностей (например, металлических)

    Необходимость одновременного считывания данных с нескольких меток (защиты от коллизий)

    Необходимость защищенного исполнения меток, скрытого размещения меток

    Высокие требования к безопасности меток

    Хранение и перезапись данных

    Простота интеграции с используемой инфраструктурой

Please enable JavaScript to view the

© 2024 magnetic-shop.ru
Безопасность. Интернет. Программы. Ноутбук. Компьютеры